Embeddings API
FastRouter.ai supports a unified Embeddings API to generate high-quality vector representations for your text using supported model providers like OpenAI.
Supported Models
openai/text-embedding-3-small
Fast and lightweight embedding model
openai/text-embedding-3-large
High-quality embeddings for nuanced tasks
openai/text-embedding-ada-002
Most cost-effective embedding model
google/gemini-embedding-001
Google's versatile embedding model for text and multimodal tasks
deepinfra/intfloat-e5-base-v2
Efficient, high-performance embedding model based on E5 architecture from DeepInfra
Parameters
model
string
The fully qualified model slug. See Supported Models above.
input
string
or string[]
The input text or array of texts to embed. Maximum length depends on the model used.
dimensions
integer
Optional. The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3
and later models.
Endpoint
POST https://go.fastrouter.ai/v1/embeddings
Request Format
Send a prompt input with an optional dimensions parameter to generate embeddings.
Request Example
{
"model": "openai/text-embedding-3-large",
"input": "What is node JS?",
"dimensions": 4
}
Sample Response
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [0.0023, 0.0492, ..., -0.0187]
}
],
"model": "openai/text-embedding-3-large",
"usage": {
"prompt_tokens": 5,
"total_tokens": 5
}
}
Python Example
You can use the OpenAI Python SDK with FastRouter's base URL to generate embeddings. Here's a sample script:
from openai import OpenAI
client = OpenAI(
base_url="https://go.fastrouter.ai/v1", # FastRouter base URL
api_key="FASTROUTER_API_KEY", # Replace with your actual API key
)
embeddings = client.embeddings.create(
input="Your text string goes here",
model="text-embedding-3-large",
dimensions=4
)
print("Embeddings:", embeddings)
Last updated